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The atomic positions of the silicon carbide (SiC) polytypes 6H and 4H differ

slightly from an ideal tetrahedron. These small deviations can be investigated by

X-ray diffraction of so-called `quasiforbidden' re¯ections, which are very

sensitive with respect to the extremely small variations in the structure.

Nevertheless, an unambiguous calculation of the re®nement parameters from

the absolute values of the structure factors of the `quasiforbidden' re¯ections is

not possible. In the case of SiC-4H, there are two and, in the case of SiC-6H, six

different structure models, which yield the same absolute values of the structure

factors. In order to distinguish between these models, additional phase

information about the measured re¯ections is needed. To achieve this,

Renninger-scan ( -scan) pro®les in the vicinity of three-beam cases are used.

These experimentally measured  -scans are compared with theoretical

calculated pro®les for each model. Another method to distinguish the different

models is to compare the bond lengths between atoms of the two polytypes,

which have equivalent vicinities. For both SiC-4H and SiC-6H, an unambiguous

determination of the structure re®nement parameters was possible.

1. Introduction

Silicon carbide (SiC) is a semiconductor (Harris, 1995) that

appears in many polytypes (Verma & Krishna, 1966). More

than 100 polytypes are known. The most common polytypes

are 4H and 6H. Both polytypes belong to the hexagonal

crystal system and the atomic positions obey operations of the

space group P63mc (C4
6v). The carbon atoms are tetrahedral

surrounded by silicon atoms and vice versa. Owing to the

space group, the positions of the atoms perpendicular to the c

axis [0001] are ®xed, however, they are allowed to move freely

parallel to the c axis. The bond tetrahedron can be compressed

or stretched. The crystal structures of the two polytypes 4H

and 6H are shown in Fig. 1. The characteristic zigzag chains

are plotted in the �11�20� plane. Half of the atoms are labeled

X�1� to X�n=2� [X � Si;C, n is the number of SiÐC bilayers

in each polytype (SiC-4H n � 4; SiC-6H n � 6)], the other

half by X�10� to X�n0=2�. The atoms X� j� and X� j0� are

on equivalent positions in the silicon carbide unit cell

( j � 1; 2; . . . ; n=2), since according to the space group there

is an equivalence of the lower and upper halves of the unit

cell. The relative displacements from the ideal tetrahedral

positions are �nH� j� for the silicon atoms and "nH� j� for the

carbon atoms. Also according to the space-group symmetry,

�nH� j� � �nH� j0� and "nH� j� � "nH� j0�. The coordinates of the

n atoms in the unit cell of these polytypes are, according to

the hexagonal crystal system for SiC-4H, for the lower half of

the unit cell:

�0; 0; ��X��; �13 ; 2
3 ; ��X��

and, for the upper half:

�23 ; 1
3 ;

1
2� ��X��; �13 ; 2

3 ;
1
2� ��X��;

with

��Si� � 0� �4H�1�;
��Si� � 4

16� �4H�2�;
��C� � 3

16� "4H�1�
��C� � 7

16� "4H�2�:

For SiC-6H, the atomic positions are, for the lower half of the

unit cell:

�0; 0; ��X��; �13 ; 2
3 ; ��X��; �23 ; 1

3 ; ��X��

and, for the upper half:

�0; 0; ��X��; �23 ; 1
3 ;

1
2� ��X��; �13 ; 2

3 ;
1
2� ��X��;

with

��Si� � 0� �6H�1�;
��Si� � 4

24� �6H�2�;
��Si� � 8

24� �6H�3�;

��C� � 3
24� "6H�1�

��C� � 7
24� "6H�2�

��C� � 11
24� "6H�3�:



Furthermore, there are two possible polarities of the crystal,

where in the case of bulk truncation with intact SiÐC bilayers

the (0001) surface would be silicon terminated, while the

(000�1) surface would be carbon terminated (Starke, 1997). In

this work, the [0001] direction was chosen as the c axis. In the

illustration of the unit cells of silicon carbide polytypes

(Fig. 1), the the polar 63 axis coincides with the c axis for the

polytype 6H, while for the polytype 4H the c axis is shifted by

a vector (ÿ 1
3 ;ÿ 2

3 ; 0) with respect to the 63 axis.

The method we used to obtain the structure-re®nement

parameters is the investigation of `quasiforbidden' re¯ections

of the type hÿ k � 3r, l even and l 6� ns, where h, k, l are the

Miller indices and r, s are integers, n � 4 (SiC-4H) or 6

(SiC-6H) (Bauer et al., 1998, 1999). The structure factor of

`quasiforbidden' re¯ections Fqf �hkil� would be zero if the

silicon and the carbon atoms were in the ideal tetrahedral

positions. The main advantage of using `quasiforbidden'

re¯ections for structure re®nement is that they are extremely

sensitive to small structure variations. Furthermore, a

correction for extinction is not needed, since the extinction

length is much larger than the absorption length, i.e.

jFqf j � jF 000 j � �SiCV=�2�re�, where �SiC is the linear absorp-

tion coef®cient for SiC, � the wavelength, V the volume

of the unit cell and re the classical electron radius

(re � 2:818� 10ÿ15 m). Since the atomic displacements �nH� j�
and "nH� j� are very small, approximately of the order of 10ÿ4

times the c lattice constant, it is possible to expand the

structure factor to the ®rst order of the atomic displacements

�nH� j� and "nH� j�. Therefore, we obtain the structure factor

Fqf �hkil� � 2fSi

Pn=2

j�1

2�il�nH� j� exp�2�il� jÿ 1�=n�

� 2fC

Pn=2

j�1

2�il"nH� j� exp�2�il3=4n�

� exp�2�il� jÿ 1�=n�; �1�
where fSi, fC are the atomic scattering factors for silicon and

carbon, respectively, and n is the number of Si±C bilayers in

each polytype. This structure factor is, for SiC-4H:

Fqf �hkil� � 2fSi2�il��4H�1� ÿ �4H�2��
� 2fC2�il�"4H�1� ÿ "4H�2�� exp�38�il�; �2�

and, for SiC-6H:

Fqf �hkil�
� 2�lfSi

ÿ� 31=2��6H�2� ÿ �6H�3�� ÿ if��6H�2� ÿ �6H�1��
� ��6H�3� ÿ �6H�1��g

�� 2�lfC

ÿ� 31=2�"6H�2� ÿ "6H�3��
ÿ if�"6H�2� ÿ "6H�1�� � �"6H�3� ÿ "6H�1��g

�
exp�14�il�:

�3�
Since the expanded structure factor Fqf �hkil� contains the

parameters �nH� j� and "nH� j� in linear combinations, only a

determination of these linear combinations of the atomic

displacements is possible by using exclusively `quasiforbidden'

re¯ections. Thus we discuss the following two subjects:

(i) Relative changes of the bilayer thickness (Fig. 2):

�d4H� j�
d0

� d4H� j� ÿ c4H=4

c4H=4

� 4��4H� j� 1� ÿ �4H� j�� (SiC-4H) �4�
�d6H� j�

d0

� d6H� j� ÿ c6H=6

c6H=6

� 6��6H� j� 1� ÿ �6H� j�� (SiC-6H): �5�

(ii) Changes of the SiÐC bond length in the c direction

(Fig. 2):

�L4H�i; j�
L0

� L4H�i� ÿ L4H� j�
3c4H=16

� 16
3 f�"4H�i� ÿ "4H� j�� ÿ ��4H�i� ÿ �4H� j��g

(SiC-4H) �6�
�L6H�i; j�

L0

� L6H�i� ÿ L6H� j�
c6H=8

� 8f�"6H�i� ÿ "6H� j�� ÿ ��6H�i� ÿ �6H� j��g
(SiC-6H); �7�

where for SiC-4H i; j � 1; 2 and for SiC-6H i; j � 1; 2; 3. c4H

and c6H are the c lattice constants for SiC-4H and for SiC-6H,

respectively, d0 is the average distance between two adjacent

Si atoms in the c direction and L0 is the SiÐC bond length for

the ideal tetrahedron.

Remark 1. All indices in brackets in this paper cannot be

larger than n=2, e.g., if j � n=2, j� 1 will be replaced by 1 etc.

2. Ambiguities of the refinement parameters

Since the relaxation parameters were obtained from the

absolute values of the structure factor of the `quasiforbidden'

re¯ections jFqf �hkil�j, an unambiguous determination is not

possible. This is obvious if we describe the deviations �nH� j�
and "nH� j� of the silicon and carbon atoms from the ideal

tetrahedron structure as follows:

�nH� j� � qunH� j� pÿ 1� � qunH�m� �8�
"nH� j� � qvnH� j� pÿ 1� � qvnH�m�; �9�

where q is ÿ1 or �1 and p, m are integers from 1 to n=2.

With these parameters, we obtain for the structure factor of

(1):

Fqf �hkil� � q exp�ÿ2�il� pÿ 1�=n�
n

2fSi

Pn=2

m�1

2�ilunH�m�

� exp�2�il�mÿ 1�=n� � 2fC

Pn=2

m�1

2�ilvnH�m�

� exp�2�i�3=4n�l� exp�2�il�mÿ 1�=n�
o
: �10�

Because the two sums in (10) are independent of the variables

p and q, one can see clearly that the absolute value of the
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structure factor jFqf �hkil�j does not depend on these variables

but the phase of the structure factor Fqf �hkil�.
This leads to the following consequences:

(i) A determination of the linear combinations of the

re®nement parameters of (2) and (3) is possible, except for the

sign. Therefore, we obtain two models for each polytype. In

the following, we will denote these two models with the

variable q, whereby q is�1 for the positive sign andÿ1 for the

negative sign.

(ii) A simultaneous cyclic permutation of the relaxation

parameters unH�m� and vnH�m� in (10) leads to the same value

for the square of the absolute value of the structure factor

jFqf �hkil�j2. This means that the relaxation parameters of the

one bilayer is assigned to the next bilayer. Owing to the

permutations, we obtain two permutation models for the

polytype 4H and three for 6H. These models will be denoted

by the variable p. In the case of SiC-4H, the value of p is 1 or 2,

in the case of SiC-6H, p = 1, 2, 3.

Overall, there are four models for SiC-4H and six models

for SiC-6H, with cyclic permutations and for each of these

permutation models a positive and a negative variant. We will

denote these models by the product �pq�nH , where the index n

indicates the polytype (n � 4 or 6). Thus, the four SiC-4H

models are �14H, ÿ14H , �24H , ÿ24H and the six SiC-6H

models are �16H, ÿ16H , �26H , ÿ26H , �36H , ÿ36H . In the case

of SiC-4H, we can restrict ourselves to the discussion of the

models �14H and ÿ14H because a permutation of the relaxa-

tion parameters yields the same result as changing the sign.

The re®nement parameters [equations (4)±(7)] according to

Bauer et al. (1999) of our different models are shown in

Table 1. In the following, we relate

our investigations to these re®ne-

ment parameters.

Below we present two possibi-

lities to resolve the ambiguities in

respect of the structure models of

the two SiC polytypes 4H and 6H.

One method is based on a

comparison of the cell internal

structure and the precisely

measured c lattice constant of the

two polytypes. The other method

uses a qualitative comparison of

measured and calculated  -scan

pro®les close to three-beam nodes.

3. Comparison of the cell
internal structure of the
polytypes SiC-6H and SiC-4H

One possibility to distinguish the

six different models of SiC-6H and

the two models of SiC-4H, respec-

tively, is to compare the internal

structure of the two unit cells. This

means that the bond lengths and

angles in equivalent vicinities of the

polytypes 4H and 6H are compar-

able. Under this condition, the SiC-

6H segment between the silicon

atoms Si(3) and Si(20) is compar-

able with the SiC-4H segment

between the atoms Si(2) and Si(20)
(Fig. 1). So the SiC-6H crystal

structure can be composed of the

SiC-4H segment between Si(2) and

Si(20) and the SiC-6H segment

between Si(20) and Si(30) and an

analogous repetition. A compari-

son of the calculated c lattice

constant of such an SiC-6H unit cell

with the experimental lattice

Figure 2
Thickness of the Si±C bilayer dnH� j� and bond length in the c direction LnH� j� of the SiC polytypes 6H
and 4H.

Figure 1
Atomic structures of the SiC polytypes 4H and 6H [cut through the (11�20) plane]. �nH� j� and "nH� j� are
the relative deviations of the Si and C atoms. h denotes the hexagonal Si±C bilayers, c the cubic ones.



constant, which was determined by high-precision X-ray

measurements (Bauer et al., 1998), allows a distinction of the

different re®nement models if one uses the following

assumption: In the case of SiC-6H, the difference in the SiÐC

bond length between the two adjacent cubic bilayers [L6H�2�,
L6H�3�] in the elementary cell is negligibly small in comparison

to the difference in the SiÐC bond length between a hexag-

onal [L6H�1�] and a cubic bilayer. Thus the models obtained by

cyclic permutations can be eliminated and we obtain for the

relaxation parameters according to Fig. 2 approximately:

j�L6H�2; 3�j � j�L6H�1; 2�j j�L6H�2; 3�j � j�L6H�1; 3�j;
�11�

respectively. If we permute simultaneously both relaxation

parameters u6H� j� and v6H� j� ( j � 1; 2; 3) cyclically, this

equation would only be satis®ed for the models �16H and

ÿ16H . The other four models (�26H , �36H) result in an

equality of the SiÐC bond length of the hexagonal and one

cubic bilayer contrary to our assumption. This assumption is

also in accordance with theoretical ab initio calculations from

KaÈckell et al. (1994) and Cheng et al. (1990).

According to our model in which the SiC-6H structure is

composed of SiC-4H segments and additional cubic bilayers,

the c lattice constant of the polytype SiC-6H can be calculated

from the SiC-4H c lattice constant and the thickness of the two

additional Si±C bilayers. The thickness of these additional

bilayers is equivalent to the distance between the silicon atoms

Si(20) and Si(30) and Si(2) and Si(3), respectively. Only this

distance contains the transfer from one cubic bilayer to

another cubic bilayer, which does not occur in the SiC-4H unit

cell. The value of this bilayer thickness is given by d6H�2� (Fig.

2). For the c lattice constant of our model, �c6H�mo, of the

polytype SiC-6H, we obtain the following equation

�c6H�mo � �c4H�ex � 2�c6H�ex�16� �6H�3� ÿ �6H�2��

� �c4H�ex � 2
�c6H�ex

6
1��d6H�2�

d0

� �
; �12�

where �c4H�ex and �c6H�ex are the experimental c lattice

constants of the polytypes 4H and 6H (Table 2), respectively,

�d6H�2�=d0 is the re®nement parameter given in Table 1

(ÿ0:00102 for the model�16H ,�0:00102 for the modelÿ16H).

The use of the re®nement parameter of the carbon atoms

instead of the silicon atoms leads to the same results. The

results of this calculation for model �16H and model ÿ16H are

shown in Table 3.

The relative deviation between the calculated c lattice

constant according to (12) and the experimental c lattice

constant of the polytype 6H is more than 50 times smaller

for model �16H than for ÿ16H . Therefore, we conclude that

model �16H describes the polytype 6H. For model �16H , the

values of the re®nement parameters �L6H�1; 2�=L0 and

�L6H�1; 3�=L0 are positive (Table 1). This means that the

SiÐC bond length in a hexagonal bilayer is larger than in a

cubic bilayer. If we assume for the polytype SiC-4H also that

the SiÐC bond length is larger in a hexagonal bilayer than

in a cubic bilayer, the sign of the re®nement parameter

�L4H�1; 2�=L0 (Table 1) must be positive. Thus, model �14H

describes the structure of the polytype SiC-4H. The in¯uence

of the difference in the a lattice constants of the two poly-

types is negligible and was therefore not considered.

4. Comparison of Umweg scans of `quasiforbidden'
reflections with calculated profiles

Another possibility to distinguish the six structure models of

SiC-6H or the two models of SiC-4H is to investigate three-

beam cases (Umweganregung) of `quasiforbidden' re¯ections.

The structure factor of a given `quasiforbidden' re¯ection of

one polytype has the same absolute value for all of our

structure models but a different phase. Such phase informa-

tion can be obtained by a comparison of measured and

calculated Umweg scans, which allows an unambiguous

determination of the re®nement parameters without any

additional assumptions.

According to (10), the phase difference of our structure

re®nement models with regard to model �1nH is given by

�'pq�hkl� � �l�pÿ 1�
n=2

� �1ÿ q��
2
: �13�

In the case of SiC-6H, the phase difference of a given

`quasiforbidden' re¯ection between each of the six models is

60�; in the case of SiC-4H, the phase difference between the

two models is 180�.
In three-beam cases (Chang, 1984), there is a superposition

of the direct wave, caused by a two-beam diffraction and a

second wave, resulting from the Umweg diffraction. Phase

information can be retrieved from the interference of these

two waves. To generate three-beam cases experimentally, the

crystal is rotated about the reciprocal-lattice vector H

( -scan), which is in the re¯ection position; thereby a second

reciprocal-lattice vector L is scanned through the Ewald

Acta Cryst. (2001). A57, 60±67 Bauer et al. � Structure refinement of SiC 63

research papers

Table 2
Experimental c and a lattice constants of the SiC polytypes 4H and 6H
(Bauer et al., 1998).

Polytype c lattice constant (AÊ ) a lattice constant (AÊ )

SiC-4H 10:08480� 0:00004 3:08051� 0:00006
SiC-6H 15:11976� 0:00006 3:08129� 0:00004

Table 1
Changes of the thickness of SiC bilayers and SiÐC bond length in the c
direction in % (Bauer et al., 1999).

p and q denote the permutation and the changing of the sign, respectively.
SiC-4H: p = 1, 2; SiC-6H: p = 1, 2, 3. q = �1 for both polytypes.

Polytype % %

SiC-4H ��d4H�p�=d0�q �0:07 ��L4H�p; p� 1�=L0�q �0:18
��d4H�p� 1�=d0�q ÿ0:07 ��L4H�p� 1; p�=L0�q ÿ0:18

SiC-6H ��d6H�p�=d0�q �0:048 ��L6H�p; p� 1�=L0�q �0:32
��d6H�p� 1�=d0�q ÿ0:102 ��L6H�p; p� 2�=L0�q �0:32
��d6H�p� 2�=d0�q �0:054 ��L6H�p� 1; p� 2�=L0�q 0:00
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sphere. Then automatically a third re¯ection Hÿ L is also in

re¯ection position. The directly diffracted wave and the

Umweg wave propagate in the same direction. When the

reciprocal-lattice vector L passes through the Ewald sphere,

there is a phase shift �� � of the second wave from 0 to 180�

when the lattice vector L goes from inside to outside the

Ewald sphere (in! out) and from 180 to 0� when L goes from

outside to inside (out! in) (Weckert & HuÈ mmer, 1997;

Woolfson & Fan, 1995). The total phase difference 'tot� �
between the primary wave and the Umweg wave is

'tot� � � '3 ��� � �14�
with

'3 � 'L � 'HÿL ÿ 'H; �15�
where '3 is the phase invariant of the three-beam case and 'H,

'L, 'HÿL are the phases of the involved re¯ections. From this it

follows that there is a dependence of the phase-dependent

part of the three-beam pro®les from cos�'3 ��� �� (HuÈ mmer

& Weckert, 1995). In our case, H indicates a weak `quasi-

forbidden' re¯ection (jFHj � jFqf j � 10ÿ1), whereas L and

Hÿ L are strong re¯ections (jFLj and jFHÿLj> 101). Only the

structure factor and therewith the phase 'H of the weak

re¯ection H depends on the re®nement parameters. The

dependence of the structure factors and their phases of the

strong re¯ections L and Hÿ L from the re®nement param-

eters are negligible, because the deviations from the ideal

tetrahedron structure are very small. The strong Umweg

re¯ections L and Hÿ L generate a reference wave, which is

independent of the re®nement parameters. Thus, the differ-

ence of the phase invariant '3 of the different models depends

only on 'H and is therefore 60� in the case of SiC-6H and 180�

in the case of SiC-4H. Since jFLj, jFHÿLj � jFHj, the phase-

independent part owing to Umweganregung dominates close

to the center of the Umweg peaks and phase information can

only be obtained from the wings of the Umweg peaks, where

the amplitudes of the primary and the secondary waves have

comparable magnitudes (Chang & Tang, 1988). If the phase

invariant '3 is close to 0 or 180�, these wings show a strongly

asymmetric behavior. If the distance from the center of

the Umweg peak is large in comparison to the FWHM

of the strong Umweg re¯ection, the additional phase shift

�� � is approximately 0� {cos�'3 ��� �� � � cos�'3�} and

180� {cos�'3 ��� �� � ÿ cos�'3�}, respectively. Since

cos�'3 ��� �� � � cos�'3�, the polarity of the crystal struc-

ture has no in¯uence on the wings of the three-beam pro®les,

i.e. H and �H yield the same result. Under this condition, the

theory of Shen (1986) is a good approximation to describe the

behavior of the wings of the Umweg peaks but not of the

center of the peak. This theory is based on the perturbation

theory of scattering of electromagnetic waves. It uses a

method similar to the second-order Born approximation in

quantum mechanics to calculate the integrated intensities of

rocking curves of the weak `quasiforbidden' 000l re¯ections

close to three-beam nodes. An exact dynamical calculation

was not necessary, because we were only interested in the

wings of the Umweg peaks and at those positions the extinc-

tion is negligible. Furthermore, the requirement to the accu-

racy are not very high, since the phase differences of the

structure factors of `quasiforbidden' re¯ections for each model

are 180� in the case of SiC-4H and 60� in the case of SiC-6H.

If H is a weak `quasiforbidden' 000l re¯ection, there is in the

hexagonal crystal system in addition to the strong re¯ection L

always another strong re¯ection L0, which is also located at the

Ewald sphere. Therefore also Hÿ L0 is in the re¯ection

position. The resultant four-beam cases H, L0, L0 ÿ L, Hÿ L

and H, L, Lÿ L0, Hÿ L0, respectively, are negligible because

L0 ÿ L and Lÿ L0 are always weak `quasiforbidden' re¯ec-

tions. The two three-beam cases H, L, Hÿ L and H, L0, Hÿ L0

are equivalent owing to the crystal symmetry, i.e. we obtain

FHÿLFL

FH

� FHÿL0FL0

FH

�16�

and

'L � 'HÿL ÿ 'H � 'L0 � 'HÿL0 ÿ 'H: �17�
The  scans of the `quasiforbidden' 000l re¯ections for

SiC-4H and SiC-6H single-crystal samples were performed

at the CRG beamline (ROBL) of the Forschungszentrum

Rossendorf at the European Synchrotron Radiation Facility

(ESRF) in Grenoble (Matz et al., 1999). The SiC-4H sample

was a modi®ed Lely grown crystal (Cree Research) and the

Table 3
Calculated c lattice constants of the models �16H and ÿ16H and the
difference between these calculated values and the experimental data.

Model �c6H�mo (AÊ ) j��c6H�ex ÿ �c6H�mo�=�c6H�exj (%)

�16H 15.11958 1:2� 10ÿ3

ÿ16H 15.12986 6:7� 10ÿ2

Figure 3
Umweg location plot for the SiC-6H 000�8 re¯ection. The angle 0.0
indicates the �1000� direction in the hexagonal crystal structure. The
dotted line indicates the wavelength used. The numbers beside the
location lines denote the Miller indices of the strong Umweg re¯ections L
and L0 (cf. Fig. 5).



SiC-6H sample a Lely platelet. Both samples were cut on an

axis perpendicular to the [0001] direction. The surface of the

SiC-4H crystal was silicon terminated [(0001) plane], while the

surface of the SiC-6H crystal was carbon terminated [(000�1)

plane]. The area of the sample surface was a couple of square

centimeters. The thickness of the samples was about 0.5 mm.

The X-ray beam was produced by a bending magnet, colli-

mated at a silicon mirror, passed through a double-crystal

silicon monochromator of ®xed exit type with Si (111) and a

focusing second silicon mirror. The two-mirror arrangement

suppresses higher harmonics better than 10ÿ4. The wave-

lengths used were 1.5383 and 1.5440 AÊ . For investigation of

the samples, a six-circle goniometer with x±y±z table (Huber)

was at our disposal. The beam cross section was 0.3 � 0.3 mm.

The X-ray beam was � polarized.

A direct comparison of the measured  -scans with the

calculated integrated intensities according the theory of Shen

is possible because the contribution from the instrument

(FWHM approximately 0.003�) is much broader than the

intrinsic rocking curve (FWHM approximately 10ÿ4�) and the

sample crystals were almost perfect. This means that the

FWHM of a rocking curve of a `quasiforbidden' re¯ection is

only determined by the apparatus function. Then the inte-

grated intensity of the `quasiforbidden' 000l re¯ections is

proportional to the maximum intensity of a rocking curve,

which is measured at a  scan. For the calculations of the

 -scans we used the re®nement parameter given in Table 1.

In the case of a 000l re¯ection H, the  position of an

Umweg re¯ection L can be calculated using, similar to Cole et

al. (1962), the following equation:

� � 2dH cos 

�cos2  � dL cot �ÿ dHcosec �� �2=d2
L�1=2

; �18�

where � is the wavelength, � is the angle between the reci-

procal-lattice vector H and L, dH, dL are the lattice plane

distances of these re¯ections, and  is the azimuthal angle

relating to the [1000] direction. According to point group

6mm, 12 equivalent Umweg re¯ections would appear in a 360�

azimuthal  scan. Arbitrarily, the (1000) mirror plane was

chosen as the azimuthal zero point. Fig. 3 shows according to

(18) the azimuthal angles of all possible three-beam re¯ections

at a selected wavelength range for the `quasiforbidden'

SiC-6H 000�8 re¯ection. Positions of equivalent Umweg

re¯ections are located azimuthally symmetric to the zero

position, whereby the asymmetric pattern of the Umweg peaks

is opposite, since the reciprocal-lattice vector L goes from the

inside to the outside through the Ewald sphere (in! out) or

vice versa (out! in), e.g. the 1�102 and 01�12 re¯ections in

Fig. 3.

A comparison of measured and calculated  -scan pro®les

for the SiC-6H re¯ection 000�2 is shown in Fig. 4. Fig. 4(a)

shows the measured  -scan pro®le of the `quasiforbidden'

re¯ection 000�2 and Figs. 4(b)±(d) the calculated pro®les of the
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Table 4
Phase invariants '3 of the six different SiC-6H models of the Umweg
re¯ections L and L0 (cf. Fig. 4) of the `quasiforbidden' 000�2 re¯ection in �.

out! in means that the azimuthal scan is carried out so that L and L0 pass the
Ewald sphere from outside to inside.

L=L0 �16H ÿ16H �26H ÿ26H �36H ÿ36H

12�3�1=12�3�1 (out! in) ÿ172 8 ÿ52 128 68 ÿ112
12�31=12�3�3 (out! in) ÿ6 174 114 ÿ66 126 54
12�32=12�3�4 (out! in) 154 ÿ26 ÿ86 94 34 ÿ146
1�103=1�10�5 (in! out) ÿ47 133 73 ÿ107 ÿ167 13

Table 5
Phase invariants '3 of the SiC-6H models �16H and ÿ36H of the Umweg
re¯ections L and L0 of the `quasiforbidden' 000�8 re¯ection in �.

L=L0 �16H ÿ36H

01�12=01�1 �10 (out! in) ÿ148 ÿ88
12�3�4=12�3�4 (out! in) ÿ140 ÿ80
12�3�3=12�3�5 (out! in) 40 100
21�33=21�3 �11 (out! in) 41 101

Figure 4
(a) Measured azimuth scan of the SiC-6H 000�2 re¯ection. The numbers
beside the Umweg peaks denote the Miller indices of the strong
re¯ections L and L0. (b)±(d) Calculated azimuth scans of the six different
models of the same re¯ection.
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six models. Only the two models �16H and ÿ36H match

qualitatively with the measured  -scan. Unfortunately, the

two models show very similar  -scan pro®les because the

cos�'3� of these two models of each of the four displayed

Umweg re¯ections has the same algebraic sign. The calculated

phase invariants of the `quasiforbidden' 000�2 re¯ection are

shown in Table 4. The asymmetry of the wings of the Umweg

peaks is according to the approximation of Shen, besides some

geometric factors, related to the cosine of the invariant phase

'3. A change of the sign of the cosine of '3 leads to an

opposite asymmetric pattern of the Umweg peak. However,

this theory results in the same Umweg pro®les for the phase

invariants '3 and ÿ'3 because cos�'3� and cos�ÿ'3� are

identical. Additionally, Fig. 4 also shows a decreasing two-

beam intensity of the weak 000�2 re¯ection in the direction of

positive angles. This is caused by a small maladjustment of the

sample, which means that the lattice-plane normal was not

exactly parallel to the rotation axis.

In order to distinguish the two models

�16H and ÿ36H , another  scan was

performed on the `quasiforbidden' 000�8
re¯ection of SiC-6H (Fig. 5). The phase

invariants of this re¯ection are given in

Table 5. Now it can be seen clearly that

only the model �16H is in accordance

with the measured  -scan pro®le.

For the polytype SiC-4H, an unam-

biguous distinction of the two models is

easier because the difference of the

phase invariant '3 for models �14H and

ÿ14H is 180�. The asymmetric wings of

the three-beam peaks possess the

opposite behavior for models �14H and

ÿ14H . Fig. 6 shows a comparison of a

measured  -scan of the `quasiforbidden'

SiC-4H re¯ection 0002 with the calcu-

lated curves of models �14H and ÿ14H

and Table 6 shows the corresponding

phase invariants. Only model �14H

matches the measured  -scan pro®le.

For both SiC-6H and SiC-4H, model

�1nH is in accordance with the structure

re®nement parameters, which were

found by ab initio calculations from

KaÈckell et al. (1994) and Cheng et al.

(1990).

5. Summary

The use of `quasiforbidden' re¯ections

allows high-precision determination of

relaxation parameters of SiC-4H and

SiC-6H, but this method is ambiguous.

We have proposed two approaches to

get an unambiguous determination of

the relaxation parameters of these

silicon carbide polytypes. By means of a

comparison of the internal structure of

the unit cells and the precisely measured

lattice constants of SiC-4H and SiC-6H,

it was possible to abolish the ambiguity

in respect of the six different structure

models of SiC-6H as well as the two

models of SiC-4H. This method works

only with the assumption of the

equivalence of both cubic bilayers of the

Figure 6
Left: experimental azimuth scan of the SiC-4H 0002 re¯ection. The numbers beside the Umweg
peaks denote the Miller indices of the strong re¯ections L and L0. Top right: simulation of the
SiC-4H 0002 re¯ection model �14H . Bottom right: simulation of the SiC-4H 0002 re¯ection
model ÿ14H .

Figure 5
Left: measured azimuth scan of the SiC-6H 000�8 re¯ection. The numbers beside the Umweg peaks
denote the Miller indices of the strong re¯ections L and L0. Right: calculated azimuth scans of the
two remaining models (�16H , ÿ36H) of the same re¯ection.



polytype SiC-6H. Without any additional assumptions, it was

possible to distinguish the six different models of SiC-6H as

well as the two models of the polytype 4H by a comparison of

measured  -scan pro®les of `quasiforbidden' re¯ections close

to three-beam nodes with calculated pro®les according to a

second-order Born approximation of Shen, because the phase

differences of the structure factors of `quasiforbidden'

re¯ections for each model are discrete and equidistant. Using

this method, neither an exact adjustment of the calculated

pro®les to the measured data nor a dynamical calculation was

necessary to reach this aim. Both methods to obtain an

unambiguous structure re®nement model led to the same

result, which is also in agreement with theoretical models

obtained by ab initio calculations.
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Table 6
Phase invariants '3 of the SiC-4H models �14H and ÿ14H of the Umweg
re¯ections L and L0 of the `quasiforbidden' 0002 re¯ection in �.

L=L0 �16H ÿ36H

02�21=02�21 (out! in) ÿ155 25
02�20=02�22 (out! in) 13 ÿ167
01�1�3=01�15 (out! in) ÿ175 5


